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A family of boundary conditions which simulate outgoing radiation are derived. These 
boundary conditions are applied to the computation of steady state flows and are shown to 
significantly accelerate the convergence to steady state. Numerical results are presented. 
Extensions of this theory to problems in duct geometries are indicated. 

I. INTRODUCTION 

An important goal of computational fluid dynamics is the computation of steady 
state flows exterior to a body, such as an airfoil. This is frequently accomplished by 
integrating the time-dependent Navier-Stokes or Euler equations until a steady state 
is achieved. This raises two (related) computational problems: 

(a) How to compute in an exterior region; 

(b) How to accelerate convergence to the steady state. 

The numerical treatment of exterior regions requires a method to convert the 
problem to one in a bounded region. One method is to map the exterior region into a 
finite region. Many equations, however, have oscillatory solutions near infinity. For 
these cases, the mappings can create substantial errors since waves in the vicinity of 
infinity cannot be resolved (see, e.g., Grosch and Orszag [ 11). An alternative 
approach is to truncate the unbounded region at some finite, artifical surface. This 
creates a finite computational region at the expense of imposing boundary conditions 
at the artificial boundary. 
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If the problem has wavelike solutions near infinity, then these boundary conditions 
must simulate the radiation of energy out of the computational domain and towards 
infinity. Incorrect specification of these radiation boundary conditions can cause 
spurious reflected waves to be generated at the artitical boundary. These waves 
represent energy propagating into the computational domain from infinity. Since they 
are not part of the desired solution, they can substantially degrade the accuracy of 
the computed solution. If the time-dependent equations are only an intermediate step 
towards computing a steady state, then a flow of energy into the computational 
domain can delay convergence. Conversely, the correct specification of radiation 
boundary conditions can accelerate convergence. Thus, the two questions raised in 
the first paragraph are related through the concept of radiation boundary conditions. 

In order to minimize the effect of spurious reflections, the computational region 
can be enlarged so that the artificial boundaries are far from the region of interest. 
This will increase both the memory requirements and the running time of the 
computer program. It is preferable to specify boundary conditions that allow the 
computational region to be constricted as much as possible. 

Our goal is therefore to construct radiation boundary conditions which have the 
following properties: 

(a) To accurately similate the radiation of energy out of the computational 
domain. 

(b) To accomplish (a) with an accuracy which improves as fast as feasible as 
the artificial surface is moved outward. Equivalently, the boundary conditions will be 
accurate when the computational domain is constricted. 

(c) To accelerate convergence to the steady state (by minimizing spurious 
reflections). 

The approach taken here is similar to that of [24]..We assume that in the far field 
the (possibly nonlinear) equations reduce to some simple form, e.g., a wave equation, 
Poisson’s equation or the reduced wave equation. An asymptotic solution to the 
model equation is then constructed. This solution is usually based on a general 
functional form which specifies the behavior of the solution near infinity. In the 
problems considered here, the desired behavior is that the solution be composed of 
outgoing waves. We wish to stress that the expansion depends on the geometrical 
properties of the computational domain. For example, the asymptotic expansion will 
differ in ductlike geometries (infinite in only one dimension) from that in fully 
exterior regions (infinite in all dimensions). Thus, the expansion is based on global 
properties of the solution. The asymptotic expansions will usually be in terms of a 
reciprocal radius, i.e., in terms of distances, but can also be in terms of frequencies. 

Once the functional form of the asymptotic expansion is known. we can derive 
differential relations that are exactly satisfied by any function having the given 
functional form. These differential relations, when used as boundary conditions, effec- 
tively match the solution to the asymptotic expansion valid near infinity. These 
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radiation boundary conditions become increasingly accurate as they match the 
solution to more terms of the asymptotic expansion. 

This procedure of matching the solution to an expansion valid near infinity 
requires some knowledge of the solution in a neighborhood of infinity. Gustaffson 
and Kreiss [5] have shown that problems in an exterior domain can in general be 
restricted to a bounded domain only when the dependent variables (and coefficients) 
approach constants at infinity. This suggests that radiation boundary conditions, to 
be applied at some artificial finite boundary, can work only by conveying information 
about the behavior of the solution near infinity. 

In this paper, we shall concentrate on applications to fluid dynamics. In 
aerodynamics, viscous effects are important only in the vicinity of bodies. Hence, the 
far field behavior is governed by the Euler equations. A consequence of this is that 
solutions in the far field have a wavelike behavior. Hence, a steady state can be 
achieved only by allowing the radiation of energy outside the computational domain. 
Therefore, a more accurate simulation of the outward radiation of energy can 
accelerate the convergence to a steady state. 

In the far field, the solution is relatively constant. Hence, to derive the boundary 
conditions, we linearize the Euler equations about this constant solution. The 
resultant system is equivalent to a convective wave equation. A family of radiation 
conditions for the standard wave equation was developed in 121. This family was 
based on an expansion that was asymptotic in the distance from an arbitrary origin. 
A family of differental operators B, was derived which annihilated the first m terms 
in the asymptotic expansion. An a priori estimate was obtained that showed that the 
error due to the use of an artificial surface coupled with the use of the boundary 
condition B,u = 0 Gas O(rpm). 

The first member of this family was generalized to the convective wave equation in 
(31. As stated above, this allows the construction of boundary conditions for the full 
time-dependent compressible Navier-Stokes equations. This condition will be 
discussed in more detail in this paper. In [4], these operators were generalized to 
elliptic equations such as the exterior Poisson and exterior Helmholtz equations. 

Other approaches to the construction of outflow boundary conditions were 
developed by Rudy and Strikwerda [6, 71 and Engquist and Majda 18, 91. Rudy and 
Strikwerda analyzed a one-dimensional model problem. A boundary condition was 
developed which accelerated the convergence to a steady state. This condition 
depended on a free parameter which was chosen, in the one-dimensional case, to 
maximize the convergence rate. In [6, 71, this boundary condition was applied to 
some two-dimensional problems where the free parameter was chosen by 
computational experimentation. This boundary condition was shown to substantially 
accelerate convergence to the steady state. 

A different philosophy was adopted by Engquist and Majda [8,9]. Their approach 
was to construct a pseudo-differential operator which exactly annihilated outgoing 
waves. This pseudo-differential operator was a global boundary operator. In order to 
derive local (i.e., differential) boundary operators, they expanded the pseudo- 
differential operators in the deviation of the wave direction from some preferred 
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direction of propagation. In this manner, they constructed a family of local boundary 
conditions which absorbed waves in a progressively larger band around a given 
propagation direction. 

These boundary conditions were tested by Kwak [IO] on the time-dependent small 
disturbance equation. It was found that the first order condition significantly 
improved the standard condition (4 = 0), where 4 is the potential. The second-order 
condition was found to offer no significant advantages. (This was an accuracy study 
and not a steady state problem.) In this case, as in other cases with circular or 
spherical symmetry, the first-order Engquist and Majda condition and the first-order 
condition in [2] coincide. 

We have so far concentrated on the use of radiation boundary conditions to 
accelerate convergence to steady state. There is also a great variety of problems 
which are inherently time dependent. These problems include the problem of acoustic 
radiation in a jet [ 111, problems in duct acoustics [ 12 1, and problems involving 
oscillations in the position of shocks [ 131. In these types of problems, it is necessary 
to simulate the condition of outgoing radiation in order to obtain a correct numerical 
solution for the time scale of interest. 

The theory to be presented here will be equally valid for these time-dependent (or 
time-harmonic) problems, provided there is some knowledge of the functional form of 
the solution near infinity. In Section II, we shall derive a family of boundary 
conditions designed to simulate outgoing radiation for the wave equation. This will 
lead to a radiation boundary condition applicable in the presence of a mean flow. 
This boundary condition shows great promise in accelerating flows to steady state. 
Numerical results illustrating this will be presented in Section III. In Section IV, we 
shall present extensions of this theory. 

II. DEVELOPMENT OF RADIATION BOUNDARY CONDITIONS 

Consider the wave equation in three space dimensions 

P,, = AP. (1) 

In a general inviscid flow, if p is the deviation of the pressure from the far field 
pressure p,, then p will satisfy equation (1) provided the free stream velocities are 
zero. (Throughout this paper we shall use the subscript co to indicate free stream 
values.) 

A spherical wave solution to Eq. (1) has the functional form 

p = f(t - r)/r. (2) 

Here f is an arbitrary function and r is the distance from some fixed origin from 
which the spherical wave emanates. A boundary condition designed to simulate 
outgoing radiation should be exact at least for waves of form (2). Suppose the 
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artificial boundary is the sphere r = r, . A boundary condition which is exactly 
satisfied by all waves of form (2) is 

B,p=O, (3) 

where the operator B, is given by 

B,=;+;++-. (4) 

Condition (3) can be regarded as matching the solution p to functional form (2). 
In general, the waves impinging on the artificial surface are not exactly spherical. 

As an example, dipoles and quadrupoles often arise in aeroacoustics. In general, an 
outwardly radiating solution to Eq. (1) will have the asymptotic expansion 

Here 6’ and $ are the angular variables associated with a spherical coorinate system 
centered at r = 0, while the functions f are arbitrary functions. (In principle, f;. for 
j i 1 can be determined from the radiation pattern f, ; however, for numerical 
purposes they should be treated as arbitrary functions.) The argument t - Y 
determines that the wave is outgoing, while the 6, 4 dependence allows for a skewing 
from spherically symmetric waves. 

Series (5) has been studied by many authors (see, e.g., Friedlander [ 141). We are 
not concerned here with conditions for convergence, but merely require that this 
series represent the behavior of the solutions in a neighborhood of infinity. 

Applying the operator B, to representation (5), we see that 

B, plr=r, = W/r;). (6) 

It therefore follows that the radiation boundary condition 

B,p=O (‘1 

will be increasingly accurate as the position of the artificial boundary, e.g., the sphere 
r = r,, approaches infinity. Condition (7) is exact only for the first term in expansion 
(5). It can be regarded as matching the solutions to the first term in expansion (5) 
with the error in (6) depending on the amount of skewing expressed in the next order 
term f, . 

Based on this motivation, a natural procedure to improve condition (7) is to derive 
boundary conditions which match the solution to the first two terms in (5). Such a 
condition is 

B, PI,=,, = 0, (8) 
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where the operator B, is given by 

It can easily be verified that (8) is exactly satisfied by the first two terms in the 
expansion (5). Applying the operator B, to (5) we obtain 

Thus, boundary condition (8) is more accurate in the vicinity of inlinity bcause it 
matches the solution to the first two terms in (5). Consequently, boundary condition 
(8) can be expected to be more accurate at near distances. Alternatively. if the 
solution is, for example, a pulse, (8) would be expected to accelerate convergence to 
the steady state value because the reflected waves generated at the boundary would be 
smaller. 

The procedure which led to operator (9) can obviously be extended to boundary 
operators. which annihilate any number of terms in (5). The well-posedness of the 
resulting boundary conditions together with rigorous error bounds are discussed in 
[ 2 1. Some numerical results for acoustic radiation problems will be presented in the 
next section. 

In order to derive boundary conditions for more general fluid dynamics problems, 
we next consider the effect of a constant free stream flow. For simplicity, we consider 
the two-dimensional Cartesian case. Let x and y denote the coordinate directions and 
u and v the corresponding velocity components. In addition, we let p be the pressure 
and p the density. We assume that in the far field the resulting steady state is given 

by 

Zl=Ll*, v  = 0, P=P,, P=Px,. (11) 

(This can always be arranged by a rotation of the coordinate system.) 
In the far field, away from bodies and boundary layers, viscosity and entropy 

changes can be neglected. If we therefore introduce the deviations from steady state 

L2=L4-LLs, l?=tl-vmr p”” P- PC,, p^=p-pp,, (12) 

and assume that quadratic terms in these variables can be neglected, we obtain the 
linearized Euler equations 

G, + u,Q, + p ,̂/p, == 0, 8, + u,fi, + p",/P,, = 0. 

$, + u, fix + p, c’,(C, + v ,̂) = 0. 
(13) 

(Here c, is the far field sound speed.) 
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By straightforward manipulation, (13) can be reduced to a convective wave 
equation for p^, 

A, + 2% ix, - (c’, - u’,>p^,, - cf, a,, = 0. (14) 

Assuming that the steady state is subsonic in the far field, i.e., U, < c,, we can 
derive radiation boundary conditions for (14) in the same manner as for the standard 
wave equation (1). At a subsonic boundary, one boundary condition must be 
imposed, either for (14) or system (13) (see [ 151). Choosing a radiation boundary 
condition can be expected to accelerate the convergence to a steady state. 

At a supersonic outflow boundary, all of the characteristics go out of the domain, 
No extra boundary condition can be imposed in this case, instead the solution should 
be obtained by a numerical procedure such as extrapolation. 

We next proceed to derive a radiation boundary condition based on the convective 
wave equation (14). The most convenient way to proceed is to introduce new coor- 
dinates which transform (14) into the standard wave equation. Let M, be the free 
stream Mach number, 

M, = u,/c,. (15) 

(M, < 1 is the condition for a subsonic boundary.) Introducing new coordinates 

(= (1 -MZ,))“ZX, 5 = c,( 1 - M&,)“Q + M, r, (16) 

Eq. (14) is transformed into 

L , .  A 

P,, = Prr + P?Y. (17) 

Equation (17) is the two-dimensional version of (1) and will therefore have 
outgoing circular waves, which in the two-dimensional case are asymptotic solutions. 
Introducing polar coordinates 

d2=c2+y2; tan I3 = yj<, (18) 

then for large values of t and d, p will have the asymptotic form 

+j-(r-dd,B)/d’f2. (19) 

(This was shown, for example, by Lax and Phillips in [ 161.) 
In the same way as boundary operator (4) was derived, it can be shown that the 

boundary condition 

j3,+fid+j/2d=0 (20) 

is exact for all functions having functional form (19). We next express (20) in the 
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physical coordinates t, x, and y. For clarity, we shall write it in terms of the total 
pressure p = p^ + p,. We obtain the condition 

(l/ccc G=E)ll - W~)(~,l~)l Pf 

+ (xld)~, + (yld)~, + (P -p,)/2d= 0, (21) 

where in physical coordinates 

d* = x2/( 1 - MZ,) + y2. (22) 

(The factor of 2 in the last term in (21) is due to the d”* decay in Eq. (19) which is 
characteristic of two-dimensional problems.) We finally use the linearized Euler 
equations (13) to eliminate the spatial derivatives of p. The result is 

1 PC&‘, 
(cf, -uz,)“* Pt- c’,-u’, d 

5 [u, - w$l --Pm 5 Iv, + u,v,I +‘+=O. (23) 

In the steady state, (23) does not strictly enforce p =pm, i.e., p equals p, only 
when the gradient of v vanishes. Based on the functional form (19), any steady state 
must satisfy p - p, = O(d-‘I*), and it can then be seen that at the steady state, (23) 
enforces p = p, to within O(d-‘I*), which is the accuracy of the boundary condition. 
In practice, the gradients of v are negligible and in fact, u and v are often obtained 
from zeroth order extrapolation, which is a consistent approximation to u, = 0 and 
hence vY = 0 (from Eq. (13)). The numerical results presented in Section III were 
generally obtained by neglecting the spatial derivatives of v in Eq. (23). 

Me3 - 43) l’*) Pt - @, c~/(c~ - uiJ)W) u, -p&/d) v, + (P - PccWd = 0. 

(24) 

The coefficients in (23) require knowledge of pm, and c,, which are not generally 
known a priori at the boundaries. We have used the values at the preceeding time step 
and have found no difficulties from this. 

Boundary condition (24) is an outflow boundary condition which simulates 
outgoing radiation. When coupled with some numerical procedure for the other 
variables (typically zeroth order extrapolation), it permits a boundary treatment 
which sustantially accelerates convergence to the steady state. Our numerical 
experiments indicate that this acceleration is relatively insensitive to the choice of 
origin. From the nature of its construction, it is also applicable to truly time- 
dependent problems where there is a continuing radiation of energy across the 
outflow boundary. 

Another application of this theory is at characteristic boundaries. These boundaries 
are tangent to the free stream velocities and arise even in supersonic flow. For 
example, in flow past a flat plate, with free stream velocity u,, v, = 0, the boundary 
y = const (i.e., the top of a computational rectangle) is characteristic. At these boun- 
daries, one frequently extrapolates all the dependent variables. This can cause 

581/48/Z 3 
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oscillations which delay convergence to a steady state. In addition, these oscillations 
require that the top boundary be sufficiently far away so that the oscillations will not 
degrade the accuracy of the steady state (see, e.g., 17)). 

We have applied condition (24) at characteristic bounaries with success. Since no 
condition (other than u = 0) should be imposed at a characteristic boundary, better 
results were obtained by replacing pm by p at the preceding time step. An alternative 
is simply to impose the one-dimensional characteristic condition 

(25) 

which is valid even if the basic flow is supersonic. The use of Eq. (25) can also 
dramatically improve convergence. The numerical results to be presented in the next 
section show the improvements that can be obtained by correctly treating the charac- 
teristic boundaries. 

III. NUMERICAL EXAMPLES 

To validate boundary condition (24), we have studied several test problems. The 
first set of probmems is designed to study the rate of convergence to a steady state. 

In the tirst problem, a compressible vortex is superimposed on a uniform flow 
u=ug, v = 0 in a rectangular domain 0 < x < 1, 0 < y < 1. The vortex is modelled 
by 

d2=R2+(X-;)2+(y-;)2, R = 0.15, 

u = (r/n)( y - 4 )/d, 

v = -(T/n)(x - S)d2, 

r = circulation = 277R(~~),,,~~. 

(26) 

The Mach number is found by assuming that the temperature is a fixed constant 
while the pressure is calculated from the total pressure by assuming isentropic flow. 
Analytically, the vortex convects downstream and out of the computational domain. 
The steady state is then just the free stream flow. Hence, the number of iterations 
required for convergence is directly related to the ability of the downstream boundary 
condition to allow the vortex to pass out of the domain without reflections. 

This problem (which was suggested by David Rudy of NASA Langley) is a model 
for both steady state problems and time-dependent compressible Navier-Stokes 
equations. MacCormack’s method is used to numerically solve the equations. The 
free stream Mach number is 0.4 and the Reynolds number is approximately 2100. 

In Table I the number of iterations required for convergence is shown for different 
choices of the origin. Boundary condition (24) is compared with that suggested by 
Rudy and Strikwerda (see 161) and also the boundary condition p = p,. The steady 
state is assumed to occur when the change in all the dependent variables is less than 
lo-‘. 
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TABLE I 

Number of Iterations to Achieve a Steady State 
for a Model Problem Containing a Compressible Vortex 

Boundary 
conditions Origin 

Number of 
iterations 

(24) 
(24) 
(24) 
(24) 

Ref. [6] 
P=Pm 

w40.5) 2251 
(0.5,O.j) 2878 

(0, 1.0) 2503 
K40.) 2530 

7860 
>20,000 

The results show that (24) provides a significant acceleration to the steady state 
and that the number of iterations is relatively insensitive to the choice of origin. 
Similar results are obtained when the disturbance is a region of high pressure instead 
of a vortex (see [3,6]). 

As a more realistic test case, we consider the devlopment of a subsonic boundary 
layer over a flat plate. This problem was used in [ 71 to compare a wide range of 
outflow boundary conditions. The computational domain is a rectangle with the 
bottom corresponding to the plate. The top of the computational rectangle is a 
characteristic boundary. A standard boundary treatment at this upper surface is to 
extrapolate all of the variables. We also consider the effect of constricting this upper 
boundary. In Table II, the number of iterations required for convergence is shown for 
both boundary treatments and for different positions of the upper boundary. Results 
are also presented for the radiation boundary condition of [ 71 with the free parameter 
a chosen to be 0.3. Distances are measured in boundary layer thicknesses with the x 
coordinate varying between 0.0 and 2.0 and the maximum upper boundary chosen as 
1.0. 

TABLE II 

Results for Boundary Layer over a Flat Plate 
with Extrapolation on Upper Boundary 

Position of 
upper boundary 

Boundary 
condition Origin Iterations 

1.0 4 (24) 
1.0 Eq. (24) 
1.0 Ref. 17) 
1.0 P=Pm 

0.6 Eq. (24) 
0.4 a. (24) 

(‘3 0) 12,500 
(07 0) 14,000 
- 12,800 

(G, 
> 20,000 

13,950” 
(‘3 0) > 14,000” 

a Inaccurate steady state 
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The results presented in Table II demonstrate that all of the radiation conditions, 
i.e., (24) and those in [7] provide a substantial improvement over the condition 

P=Pm* The effectiveness of (24) is still relatively insensitive to the choice of origin. 
Constricting the upper boundary and using extrapolation led to osillations which 
delayed the attainment of the steady state. The final steady state in this case also 
differed significantly from the steady state obtained by integrating the equations in 
the larger region. 

The use of a larger computational domain substantially increases the cost of the 
computation. This is particularly true because, in many cases, only the solution near 
the surface (in this case the plate) is of interest. In order to test the possibility of 
constricting the upper boundary, we applied radiation condition (24) at the upper 
boundary. In this case, we replace p, by p at the previous time step, as the condition 

P=Pm in the steady state is not valid when the upper boundary is reduced. In 
Table III, the results of applying (24) at the upper boundary are shown. 

The data show that a substantial acceleration of convergence can be obtained by 
using a radiation condition at a characteristic boundary. We note that in all cases, 
the steady states in Table III were virtually identical to the steady states obtained on 
the larger regions. Thus, a substantial savings in computer time can be achieved by a 
correct choice of the boundary condition at the characteristic boundary. We have 
found similar improvements by using a characteristic condition such as (25) which 
can be used for supersonic flow as well. The reason that the boundary condition of 
[ 71 is not accelerated by a radiation condition at the characteristic boundary is not 
presently clear. 

As another example, we consider inviscid flow in a quasi one-dimensional nozzle 
with variable area A(x). The equations are 

VP), + mu), = 03 (‘w), + I&u2 + PII, =A.rP, 

(‘m), + [ME + p],=O, 
(27) 

where E is the total energy. At the (subsonic) inflow, both u and E are specified. We 
shall only consider the case of a subsonic outflow so that one boundary condition 

TABLE III 

Effect of the Radiation Condition at the Upper Boundary 

Position of 
upper boundary 

outflow 
boundary 
condition 

Top boundary 
condition Iterations 

1.0 Eq. (24) m (24) 8800 
1.0 Ref. (71 w24) 12850 
0.6 w24) h. (24) 8800 
0.4 Eq. (24) h. (24) 9400 
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should be specified. By properly adjusting this outflow pressure, both shocked and 
shock-free solutions can be obtained. 

We consider the effect of different radiation conditions on convergence to a steady 
state for system (27). In this case, the condition p = pm is valid during the temporal 
evolution of the flow. The use of a radiation condition is therefore a physically incon- 
sistent artifice to accelerate the convergence to a steady state. 

Since system (27) is one-dimensional, traveling waves have no spatial decay, in 
contrast to (2) or (19). Therefore, the appropriate generalization of (24) is the 
characteristic condition 

$x$=0. (28) 

This condition was tested along with the generalized radiation condition (see [ 61) 

The solution method used was a linearized implicit Euler method (see [ 7, 81. 
Boundary conditions on the pressure are computed by using an equation for dp/dt 
and using a linearization technique similar to the basic difference scheme. In 
Table IV, we present results for several different choices of a. Both the number of 
iterations required for convergence and the steady state L, error are presented. 

The results show that the radiation condition at the outflow can substantially 
accelerate convergence. In this case, it is not necessary to have a boundary condition 
which enforces p = pm in the steady state (i.e., a = 0). The steady state condition 
p = pa is a consequence of the initial conditions. Similar results can be obtained by 
using the MacCormack explicit scheme (see 131). 

As an additional example, we consider the use of higher order boundary condition 
(10) in a time-harmonic problem. In this case, we compute the acoustic field due to a 
quadrupole source in a medium at rest. Quadrupole sources are important in the 

TABLE IV 

Steady State Results for the One-Dimensional Nozzle Flow 

Boundary L, steady state 
condition error Iterations 

Cl=03 
(i.e., P = P, 1 

a = 0.0 
a =0.278 
a= 1.0 
a = 10.0 

11.4 153 

8.11 52 
9.33 118 
8.40 182 

11.16 158 
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TABLE V 

Phase Change for Quadrupole Source 

Boundary condition Phase change 

Eq. (3) 
Eq. (10) 

0.77 zt 0.08 
1.64 + 0.08 

theory of jet noise, and an effective computation requires boundary conditions which 
will not allow spurious reflections. First-order condition (3) is inaccurate in this case 
because the leading term in expansion (5) becomes very small at 90”. 

In Table V, the phase change between 0” and 90’ is presented for the two boundary 
conditions (3) and (10). The analytic solution should exhibit a phase change of 7r/2 
(i.e., from a cosine to a sine dependence as the angle changes from 0” to 90”. It can 
be seen that second-order boundary condition (10) gives an accurate phase change 
while (3) gives a completely wrong phase change. This result clearly indicates the 
crucial importance of radiation boundary conditions in simulating fluctuating flows 
such as those occurring in aeroacoustics. 

IV. EXTENSIONS TO TIME-INDEPENDENT EQUATIONS 

In the previous sections, we have concentrated on developing boundary conditions 
for time-dependent equations. These conditions were used even in cases where the 
time dependence was only a mechanism for achieving the steady state solution. There 
are many applications, however, when one solves the time-independent equations 
directly. Generally in those cases a time-harmonic solution is sought. Some examples 
of such aerodynamic problems are the small disturbance equation about a fluctuating 
airfoil [ 191, acoustic propagation in a duct [20], and the scattering of accoustic 
waves by a body such as an airplane fuselage [ 2 11. In this section, we shall consider 
the problem of deriving radiation boundary conditions for such problems. 

As a model equation, we consider the Helmholtz equation 

AQ + k2# = 0. (30) 

(In applications, 4 can be a velocity potential or a fluctuating quantity such as the 
pressure.) When (30) is considered exterior to a body, it describes the scattering of 
waves by the body. When (30) is integrated in a duct, it describes the propagation of 
acoustic (or electromagnetic) waves in the duct. In each case, (30) must be 
supplemented by appropriate boundary conditions on the physical surfaces and a 
radiation condition enforcing outgoing radiation at infinity. 

The appropriate radiation boundary condition is different in fully exterior geometry 
than in duct geometry. This occurs since, in the duct geometry, there can exist a finite 
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number of propagating modes, each with a different wavenumber. In fully exterior 
regions, on the other hand, radiation propagates radially (with some angular 
skewing), and there is essentially only one wavenumber. 

In the fully exterior region, the appropriate boundary condition at infinity is the 
Sommerfeld radiation condition 

#,--ik$+@/r=O(l/r) (r- co). (31) 

This condition can be derived by formally differentiating the expansion 

which is the direct analog of (5) for the case of a harmonic time dependence. Higher- 
order boundary conditions can be obtained by matching the solution to more terms in 
the expansion of Eq. (32). For example, a second-order boundary operator, analogous 
to (9) is 

(33) 

The properties of these boundary conditions are discussed in detail in [4]. 
A different situation occurs in the duct Helmholtz equation. For simplicity, we 

consider the Helmholtz equation in the rectangular region 0 ,< x < co, 0 < y < 7~. The 
equations are 

4x.x + $yy + k24 = 0, Wa) 

WY = 0, at y = 0, 71, (34b) 

#lx=0 =J (34c) 

It is easy to see that the general solution is 

4 = Jgo Aj cos(jy)[eiujxuj + bj e-iOjx], where c,i = dm. (35) 

We see that for j < k, the outgoing solution is obtained by choosing 

4 N e+‘“ixa (36) 

The modes with j > k are evanescent (i.e., exponentially decaying) and the correct 
solution is obtained by requiring exponential decay as y + co, i.e., 

+e-GzG 
(37) 

Thus, the wave numbers of the solution at infinity vary with the mode. 
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A boundary operator which is exact for the propagating modes is 

It can be shown that imposition of the boundary condition 

BtL,, = 0, 

(38) 

(39) 

accurately simulates the outgoing solution with an error that decreases exponentially 
asx+co. 

If problem (34) is fomulated in cylindrical geometry, it will describe waves 
propagating in a hard-walled duct. Introducing cylindrical coordinates r and z, where 
r is normal to the duct centerline and z is the distance along the axis, the problem 
becomes (the duct diameter is scaled to unity), 

42, + (llr)(3,> + k24 = 0, 
(4% = 0, 

(51,=-L =f: 

at r=O and r=+, 

PW 

(4Ob) 

(4Oc) 

The solution is 

where J, is the zeroth-order Bessel function and Lj is twice the jth zero of JA ; also 

aj = dF=x? (42) 

It can be seen that boundary condition (39) is equally valid in this case. There is no 
need for the ducts to have straight walls except in the vicinity of infinity. 

Similar boundary conditions can be developed for computing spin modes, ducts 
with flow, or for computing in ducts with liners, where condition (40~) is replaced by 
an impedence boundary condition. The second-order boundary condition can be 
implemented in finite element codes in a manner similar to that described in 141. 

This theory has also been applied to underwater acoustics. A typical problem here 
is 

4,z + I W-WI + k24 = 0 (434 
f$=O, on z =O, (43b) 

4, = 0, on z = 71, (43c) 

$=f, on r=r,. (434 
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This problem differs from (40) in that the computational domain is infinite in the r 
direction. The outwardly radiating solution is 

4 = ,gl A, sin(Ajz) H,+(ojr), Aj= j-i, oj=\/k’-A.?. (44) 

(See, e.g., Fix and Marin, [22].) Here HJ is the Hankel function of zeroth order and 
of the first kind. By using the asymptotic expansion 

H,+(z)- fiei(Z-n’4)[(l/\/JI) + 0(z-3’2)], (45) 

and the definition of cj, we see that the solution is composed of a finite number of 
propagating modes (dj < k) and an infinite number of evanescent modes (l,i > k). 

Fix and Marin have developed an exact global radiation condition for problem 
(43). This condition can be applied at any artificial boundary r = r,. Local approx- 
imations can be developed using the ideas presented here. If there are m propagating 
modes, we can use the boundary condition 

B/Jr, 14 = 03 (46) 

where B, is the unique, mth-order differential operator which has as its fundamental 
set of solutions (H,t(crjr); j = l,..., m). Such an operator can easily be constructed 
using the theory of ordinary differential equations. 

Simpler boundary conditions can be constructed by accepting an error of rp3’2 and 
using the leading order term in expansion (45). In this case, we take as the operator 
B,, the operator which has the fundamental set of solutions {ei”jr/$, j = I,..., m}. 
For the case m = 2, we get 

B,(r)= -$io2+-& (47) 

This second-order boundary condition has been applied to various problems. 
The theory presented here is also valid in the case of a variable sound speed or of 

varying topography of the ocean bottom. The second-order boundary condition can 
be easily implemented in variational principles as described in [4]. An efficient 
implementation of the higher-order boundary conditions must still be developed. 
Similar boundary conditions have been proposed by Kriegsmann [23] for waveguide 
problems in a Cartesian coordinate system. 

V. CONCLUSION 

We have derived boundary conditions which can be used on the artificial boun- 
daries that arise when an unbounded region is truncated for computational purposes. 
These boundary conditions are based on matching the solution to a known functional 
form valid near infinity. 
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These boundary conditions have been applied to the nonlinear compressible 
Navier-Stokes and Euler equations. They have been shown to yield a substantial 
acceleration of convergence to the steady state. Over or under specification can lead 
to oscillations which degrade the accuracy of the steady state. The radiation 
boundary conditions can be used at both subsonic outflow boundaries and at charac- 
teristic boundaries where the normal velocity is zero. 

The radiation boundary conditions can also be developed directly for the steady 
state equations. For subsonic flows, the equations are elliptic. Thus we are led to the 
development of Sommerfeld-type radiation conditions for elliptic equations. As 
before, these allow for the constriction of the domain of integration without loss of 
accuracy. It is also seen that the appropriate boundary conditions depend on the 
geometry of the region. Hence, even though the boundary conditions are local they 
depend on global properties of the solution. This occurs since the boundary 
conditions are developed based on asymptotic solutions valid in the vicinity of 
infinity. These asymptotic expansions depend on global properties of the solution. In 
particular, the geometry of the region in the far field strongly affects the proper 
choice of boundary conditions. This is true for both the steady state and time- 
dependent problems. 

The boundary conditions developed are all local, i.e., differential boundary 
conditions. It is also possible to incorporate the asymptotic expansion directly in a 
finite difference scheme. This will lead to a relationship between the outermost grid 
points. This relationship is just the finite difference analog of the differential 
boundary conditions. 

Numerical results have been presented here and in [ 2-4, 11, 24 1 which verify the 
usefulness of the proposed boundary conditions. 
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